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Chapter 1

Introduction

In the following report we will be studying the Chebyshev spectral method for solving
spatio-temporal equations. Particularly we will consider the case of the non conserva-
tive Allen-Cahn equation and the conservative Cahn-Hilliard equation. We start with
a review of phase transitions and the parameters used to define them, and then look
at diffuse interface theory where the two equations originated.

1.1 Thermodynamic Equilibrium and Phase tran-

sitions

A system is defined to be in equilibrium when there is no tendency for the system
to change state i.e. it is in mechanical, chemical and thermal equilibrium. A system
in thermodynamic equilibrium can be completely characterised by it’s macroscopic
properties and thus follow a defined set of rules which govern the change in various
variables. To mathematically describe a system in thermodynamic equilibrium, we
require thermodynamic potentials i.e. functions whose extremization give the state
of equilibrium. One such potential is the Helmholtz free energy can be defined as
F = U − TS, where U represents the internal energy, T the temperature and S is the
entropy of the system. The Helmholtz free energy represents the amount of energy
available in the system that can be converted to work.

1.1.1 Phase Transitions

A phase transition occurs when a substance transitions from one thermodynamically
distinct phase to the other. Ehrenfest classified the phase transitions on the basis of
the properties of the derivatives of the system’s free energy. If the first derivative is
discontinuous at transition it is called a first order transition. If the second derivative
is discontinuous it is known as a second order transition and so on. The point in the
phase diagram where a phase equilibrium curve ends is known as the critical point.
The corresponding temperature and pressure are known as the critical temperature
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CHAPTER 1. INTRODUCTION 5

and critical pressure. The transition between an ordered and unordered phase can be
characterised an order parameter. Each phase is characterised by a particular value of
the order parameter.

1.2 Diffuse Interface theory

Next we consider the interface in a binary system. The interface can be between two
different materials or between two phases of the same material. There can be two
different approaches to modelling interfaces.

• Assuming a ’sharp’ interface between the two materials i.e. a surface with zero
thickness.

• Assuming a diffuse interface i.e. a surface of finite thickness.

Gibbs was the first to describe equilibrium thermodynamics for interfaces by assuming
a ’sharp’ surface and constructing a quantity called the surface excess φs. For the diffuse
interface approach, two such surfaces are considered with a finite volume between them.
This thus allows to work with extensive variables in the inter-facial region.

Diffuse Interface theory was developed first to study behaviour near the critical
point. Depending on the type of system, different quantities can function as the order
parameter. For a system with different phases, a phase field variable φ conveniently
functions as the order parameter. The phase field variable φ has the property of having
a value of +1 in one ordered phase and −1 in the unordered phase. In the inter-facial
region φ varies smoothly. See [5] for a review.

1.3 Allen-Cahn Equation

The inter-facial region contains a mixture of both phases. Thus the concentration of
both substances is non-uniform in this region.In [3] Cahn and Hilliard showed that the
free energy for such a non-uniform region can be expressed (to a first approximation) as
the sum of the free energy of the homogeneous system, which is a function of the long
range order parameter and a gradient term, which is a function of the local composition.

F =

∫
Fo(φ) +

1

2
c(∇φ)2dV (1.1)

Here we consider second order phase transitions. Since a second order transition is
symmetric under time reversal, the free energy must remain invariant under the trans-
formation φ→ −φ. Thus the free energy will contain only even power terms. Further
the equilibrium order parameters will be of equal and opposite sign. Thus the potential
has the double-well form given by:

Fo =
1

2
aφ2 − 1

4
bφ4 (1.2)
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If the order parameter is not a conserved quantity and the free energy where not at a
minima then Allen and Cahn postulated in [2] the change in order parameter is given
by

∂φ

∂t
= −Γ

δF

δφ
(1.3)

This is known as the Allen-Cahn equation. Using the form of the free energy for second
order transition we obtain:

∂φ

∂t
= Γ(aφ− bφ3 + c∇2φ) (1.4)

Now at the boundary, we impose the no flux condition that is ∂φ
∂n

= 0 with the initial
condition given by φ(x, 0) = φ(x) This is also known as model A dynamics and describes
the slow dynamics of a non-conservative variable.

1.4 Cahn-Hilliard Equation

If the order parameter is a conserved quantity then from Fick’s laws of diffusion:

J = −D∇µ (1.5)

and the continuity equation:
∂φ

∂t
+∇ · J = 0 (1.6)

we get
∂φ

∂t
= D∇2µ (1.7)

The chemical potential, µ is obtained from the free energy by µ = δF
δφ

. Using the form

of the free energy for a second order transition given in (1.2) we obtain:

∂φ

∂t
= D∇2(bφ3 − aφ− c∇2φ) (1.8)

We use the same Neumann conditions as above with ∂φ
∂n

= 0 and the initial condition
given by φ(x, 0) = φ(x)

This is known as model B dynamics and describes the purely dissipative dynamics
of a conserved variable.



Chapter 2

Numerical Methods

2.1 Non-dimensionalisation

2.1.1 Non-dimensionalisation of free energy

We use the form of the free energy for second order transition:

Fo =
1

2
aφ2 − 1

4
bφ4 (2.1)

For non-dimensionalisation we pick the value of φ0 which extremizes the free energy.
Solving the equation ∂

∂φ
(−1

2
aφ2+ 1

4
bφ4) = 0 (at steady state ∇φ makes no contribution)

gives us φ0 = ±
√

a
b
.

2.1.2 Non-dimensionalisation of equations

Allen-Cahn Equation

Using non-dimensionalised variable φ∗ = φ
φ0

gives us:

∂φ∗

∂t
= Γa(φ∗ − φ∗3 +

c

a
∇2φ∗) (2.2)

Using ∇∗ =
√

c
a
∇, where

√
c
a

is the coherence length and using t∗ = (Γa)t we get the
non dimensionalised form of the Allen-Cahn equation:

∂φ∗

∂t∗
= φ∗ − φ∗3 +∇∗2φ∗ (2.3)

Cahn-Hilliard Equation

Picking the same value for φ0 as in the previous case and using φ∗ = φ
φ0

we get:

∂φ∗

∂t
=
Da2

c

c

a
∇2(φ∗3 − φ∗ − c

a
∇2φ∗) (2.4)

7
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Using ∇∗ =
√

c
a
∇, where

√
c
a

is the coherence length and using t∗ = Da2

c
t we get the

non dimensionalised form of the Cahn-Hilliard equation:

∂φ∗

∂t∗
= ∇∗2(φ∗3 − φ∗ −∇∗2φ∗) (2.5)

2.2 Spatial Methods

In this section we look at ways of handling the spatial part of spatio-temporal equations.
The material is largely adapted from [6] and [7]. The key step is here is to approximate
the unknown function as a sum of basis functions.

φ(x) =
k∑
i=0

aiui

The resulting polynomial is made to satisfy the differential equation at a number of
chosen points to obtain the coefficients of expansion. The choice of basis functions is
what separates the various methods.

2.2.1 Finite Difference Methods

In finite difference methods,a uniformly spaced grid {x1, ......., xN} with xj − xi = h
is considered. The basis functions are chosen to be low, fixed order polynomials,
which satisfy the differential equation only in some sub interval. Thus the function is
approximated by low order overlapping polynomials.

To approximate derivatives we make use of the second order finite difference ap-
proximation

φ′(xj) =
φ(xj+1)− φ(xj−1)

2h
(2.6)

This can be written as a differentiation matrix given by


φ′(x0)
.
.
.

φ′(xN)

 = h−1


0 1

2
−1

2

−1
2

0 .
. . .
. . .
. 0 1

2
1
2

−1
2

0




φ(x0)
.
.
.

φ(xN)

 (2.7)

The matrix is sparse, which allows us to use high values of N. However the accuracy
is limited due to the fixed order of the polynomials. Higher order polynomials suffer
from being ill-conditioned when used over a equidistant grid.
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2.2.2 Pseudo-spectral Methods

In pseudo-spectral methods, a set of points known as the Gauss-Chebyshev-Lobatto
points (henceforth referred to as Chebyshev points) are used instead of equispaced
points. The basis functions are the Chebyshev Polynomials, Tn(cos(θ)) = cos(nθ)
which are global basis functions i.e. they approximate the function over the entire
interval compared to the local basis functions used in the finite difference method.

To approximate derivatives we consider the Chebyshev points, xj = cos(jπ/N).
The differentiation matrix is given by a (N + 1) ∗ (N + 1) matrix, D whose entries are
given by:

D00 =
2N2 + 1

6
, DNN = −2N2 + 1

6
(2.8)

Djj = − xj
2(1− x2j)

, j = 1, 2, ....., N − 1 (2.9)

Dij =
ci
cj

−1)i+j

xi − xj
, i 6= j, i, j = 1, 2...., N − 1 (2.10)

where

ci =

{
2 i = 0, N

1 otherwise

Compared to a finite difference matrix, this matrix is dense but the increased accuracy
compensates for the additional computation cost.

Matrices for higher order derivatives are simply calculated by taking the correspond-
ing power of the derivative matrix i.e. d2

dx2
is given by D2 where D is the Chebyshev

matrix defined above. To take the derivative of a multi-variable function, the partial
derivative matrices are constructed by simply taking the Kronecker product with the
corresponding identity matrix i.e. Dx = D⊗ I and Dy = I ⊗D. Higher dimensions or
more variables can be calculated analogously.

The error in spectral methods decreases much faster than in finite difference method.
This is because the order of spectral methods is not fixed. Thus as the number of points,
N, increases not only do they become more closely spaced but unlike finite difference
methods the order of the polynomials also increase. Spectral methods because of their
high accuracy with a low number of points are thus known as memory-minimising
methods.

2.2.3 Implementation

The Chebyshev differentiation is implemented by directly computing (2.8) for the off
diagonal elements. The diagonal elements are computed using the ’negative sum trick’
which is given by:

Dii = −
N∑
j=0

Dij (2.11)
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Figure 2.1: Convergence of the derivative of some functions using Chebyshev Spectral
method. The error is given by the L2 norm of the difference between the calculated and
the analytical result. At around 10−14 round-off errors take over leading to decrease in
accuracy.
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This method of computing the matrix is more accurate than the other possible ways.[8]

2.3 Temporal Methods

For the temporal integration we use the fourth order Runge-Kutta method, henceforth
known as RK4. The family of Runge-Kutta methods can be derived by approximating
yn+1 by

yn+1 = yn + ak1 + bk2 (2.12)

where k1 = hf(x0, y0) and k2 = hf(x0 + βk1, xn + αh).If k2 = 0 and a = 1 then
it reduces to the simple Euler method. We evaluate yn+1 to the order of O(h3) by
considering the Taylor series for y:

yn+1 = yn + hf(yn, xn) +
h2

2

(
∂f

∂t
+ f

∂f

∂y

)
+O(h3) (2.13)

Expanding k2 in (2.12) to O(h3) and using it in (2.12) we get

yn+1 = yn + (a+ b)hf(yn, xn) + bh2
(
α
∂f

∂t
+ βf

∂f

∂y

)
(yn, xn) +O(h3) (2.14)

Comparing identical coefficients for (2.14) and equation 3 the value of a,b,α and β can
be determined. This is the Runge-Kutta method of order 2 or RK2. Similarly RK4
can be derived by expanding and comparing the equations to O(h5). The equations
for Rk4 are:

k1 = hf(yn, xn) (2.15)

k2 = hf(yn +
k1
2
, xn +

h

2
) (2.16)

k3 = hf(yn +
k2
2
, xn +

h

2
) (2.17)

k4 = hf(yn + k3, xn + h) (2.18)

and finally

yn+1 = yn +
k1 + 2k2 + 2k3 + k4

6
(2.19)

The Runge-Kutta methods are explicit methods i.e. the state of the system at a later
time is completely specified as a function of the system at previous time values.

Time step size

Equations with have a term which rapidly leads to variation of solutions are known
as stiff equations. For such equations the use of explicit methods requires a rigid
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bound on the time step. The CFL (Courant–Friedrichs–Lewy) condition provides such
a condition requiring that in n-dimensions

∆t

(
n∑
i=1

uxi
∆xi

)
≤ Cmax (2.20)



Chapter 3

Implementation

3.1 One Dimension

3.1.1 Analytical Method

Here we consider the case with only one spatial dimension. We can obtain the steady
state solution by considering the equation when it no longer varies with time, that is:

d2φ

dx2
= φ3 − φ (3.1)

The solution to the above equation is tanh(x−x0
ξ

) where ξ = 2ε.

3.1.2 Numerical Results

We use the Chebyshev spectral method to discretize in one spatial dimension and use
RK4 for the temporal part for both equations. As seen in the figure for Allen-Cahn,
the error decreases much faster for Chebyshev spectral methods and accurate results
can be obtained using systems of size 64. The accuracy is only limited by the fourth
order time-stepping method.

3.2 Two dimensions

In two dimensions, for the Allen-Cahn equation we once again use the Chebyshev
spectral method for the two spatial dimensions and RK4 for the temporal part. We
start with a N x N random grid and simulate the dynamics till it settles into two
distinct states.

13
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Figure 3.1: (a) The variation of error (L2 norm) with system size N for both finite
difference and Chebyshev spectral methods for the Allen-Cahn equation. The inset
figure shows the tan hyperbolic interface at steady state. (b) The energy evolution of
the system with time. ε is 0.01 and the system size is 64.
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Figure 3.2: The evolution of a system under the Allen-Cahn equation. The initial
condition is completely random and slowly the system separates into two phases.



Chapter 4

Conclusion and future work.

In this report we have shown that there are advantages to using pseudo-spectral meth-
ods over finite difference methods when solving partial differential equations. They
converge faster and thus accurate results can be obtained with low values of N. How-
ever the choice of basis functions must be considered carefully, further experiments
using other basis functions and other equations can give an idea of their limits and the
suitability of each basis for different equations.

Finally, this work can simply be extended to three dimensions, which we could
not carry out due to hardware restrictions. Since the method utilised here has been
demonstrated to be working correctly for the Allen-Cahn equation, we can use it to
investigate similar but more complicated systems.

16



Appendix A

Structure factor and correlation
function

A good way of to check the validity of results is to calculate the functions C(r, t) and
S(r, t) which are the angular averages of the correlation function

C(r, t) =

∫
d3xφ(x, t)φ(x + r, t)∫
d3xφ(x, t)φ(x, t)

(A.1)

and it’s Fourier transform, the structure factor, respectively.

S(k, t) =
φ(k, t)φ(-k, t)∫
d3kφ(k, t)φ(-k, t)

(A.2)

where φ is the phase field variable. Hence, C(r, t) =
∑
|r|=r C(r, t) and S(r, t) =∑

|k|=k S(k, t). Theoretically, these functions have the scaling form as C(r, t) = F (r/L(t))

and S(k, t) = LdG[kL(t)]. The length is calculated from the structure factor as

< k >2=
1

L(t)2
=

∑
k k

2S(k, t)∑
k S(k, t)

(A.3)

Since we are working with Chebyshev points, which are non-equispaced we need to
calculate an unequally spaced Fourier transform. Simply interpolating to an equispaced
grid limits the accuracy of the results as they are now bounded by figure the accuracy
of the interpolating algorithm.

A.1 Non-uniform discrete Fourier transform

The basic formula for a non-uniform discrete Fourier transform simply follows from the
equispaced one. It is given by

Xk =
N−1∑
n=0

xne
−2πipnfk (A.4)

17
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Figure A.1: Graph for structure factor

where pn are the sample points and fk are the frequencies at which the DFT is com-
puted. The frequencies fk are taken as fk = − 2

N
xk.[10]

A.2 Structure factor

An attempt to calculate the structure factor from the calculated data for the 2D Allen-
Cahn equation led to the above figure. The data is averaged over 100 different initial
conditions. An estimate of the length scale can also be obtained by taking the inverse
of the expectation value as in equation However, when we calculate the length scale it
turns out to have a large standard deviation, which proves many more iterations are
needed and the graph for structure factor is also not accurate. The correlation function

t L(t) Standard Deviation
0.001 202.769 0.210
0.002 202.766 0.179
0.003 202.762 0.160
0.004 202.759 0.146
0.005 202.756 0.137
0.006 202.753 0.130
0.007 202.750 0.124
0.008 202.747 0.120

Table A.1: Table of Length scale values with associated standard deviations. As can be
seen the standard deviations are too high compared to the variation in length scales to
provide any meaningful graph or result.
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can also be calculated with the above data, but it requires taking the inverse Fourier
transform of the structure factor.



Appendix B

Cahn-Hilliard equation

For the Cahn-Hilliard equation a similar approach to Allen-Cahn was attempted. The
spatial dimension was resolved with the Chebyshev spectral methods while the tempo-
ral dimension was computed using RK4. The Cahn-Hilliard equation is a stiff equation
and using an explicit integrator like RK4 thus requires time steps of ∼ (∆x)4.

B.1 One Dimension

We obtained the following graph on solving the Cahn-Hilliard to get the tan hyperbolic
interface. Note that there is not much difference between the Chebyshev and the finite
difference methods. This is due to finite precision effects for polynomial expansion
which occurs due to the fourth power of the expansion. For higher derivatives, the
error increases with N leading to wildly inaccurate results.[9].

Thus a different set of basis functions need to be chosen to obtain accurate results.

B.2 Two Dimension

For two dimensions, the nature of the equation - it evolves slowly and then speeds up,
requires a large computation time since we’re using an explicit integrator with uniform
time stepping. This was prohibitive with the available hardware but a similar approach
should work. An adaptive time stepping solution is also possible.[11]

20
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Figure B.1: The variation of error (L2 norm) with system size N for both finite differ-
ence and Chebyshev spectral methods for the Cahn-Hilliard equation. The inset figure
shows the tan hyperbolic interface at steady state.ε is 0.2 and the system size is 64.
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