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This model was suggested to Ising by his thesis adviser, Lenz. Ising
solved the one-dimensional model, an easy task , and on the basis of
the fact that the one-dimensional model had no phase transition, he
asserted there was no phase transition in any dimension. As we shall
see, this is false. It is ironic that on the basis of an elementary
calculation and erroneous conclusion, Ising’s name has become among
the most commonly mentioned in the theoretical physics literature. But
history has had its revenge. Ising’s name, which is correctly
pronounced ”E-zing,” is almost universally mispronounced as ”I-zing”!

Barry Simon[1]

1 Introduction

1.1 Ising model

The Ising Model is a mathematical model which attempts to simulate a
domain in a ferromagnetic substance. [2] It consists of an array of N fixed
points called lattice points which form an n-dimensional periodic lattice.
Associated with each lattice site is a spin variable si which can take the
values +1 or −1. The energy of the system for the given configuration {si}
is given by

E{si} = −
∑
<ij>

εijsisj −H(t)
N∑
i=1

si (1)

< ij > represents the sum over all it’s nearest neighbours. For simplicity,
we consider isotropic interactions so that all εij is equal to a given number
ε. The thermodynamic properties for a 2D, square lattice in a zero field was
worked out by Lars Onsager in 1944.[2]. To perform our simulation we will
use the Metropolis algorithm.

1.2 Metropolis algorithm

In this method, configurations are generated from a previous state using a
transition probability which depends on the energy difference between initial
and final states. [3]. The algorithm proceeds as follows

1. An initial state is picked.
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2. An lattice point is chosen at random.

3. The spin is flipped at that random point and the change in energy ∆E
is calculated.

4. If ∆E is less than 0 then the change is kept, otherwise, a random
number r is chosen such that 0 < r < 1

5. If, r < e
− ∆E

kBT , the spin change is kept else it is reversed.

6. Another lattice point is picked and the above steps repeated.

After a set number of states are considered, the thermodynamic properties
are evaluated and they are added to the statistical average being kept. The
standard measure of time is the Monte Carlo Steps per site.

1.3 Expected results

The observables we will be looking at in the absence of external field are the
average energy, magnetisation, specific heat and susceptibility.

1.3.1 Onsager’s solution for zero field

The exact solutions obtained by Onsager contain very involved mathemat-
ical manipulations and due to their inapplicability in other situations they
are mainly of historical interest. [4] Here we present only a summary of the
results to compare with the results of our numerical simulations. The full
solution can be found in [2].

The critical temperature 1 is given by kBTc
J

= 2
1+
√

2
, where we set the en-

ergy scale using kB = 1 and for J = 1 we obtain Tc ≈ 2.269. The exact
solution for the energy is given by

E = −2NJtanh(2βJ)−NJ sinh2βJ − 1

sinh(2βJ)cosh(2βJ)
[
2

π
K1(κ)− 1]

where K1(κ) is the complete elliptic integral of the first kind. The specific
heat can similarly be obtained in terms of the complete elliptic integral of

1Rather than going through the full Onsager solution, the critical temperature can be
estimated by simpler physical arguments. See [5]
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the second kind by differentiating E with respect to temperature. The mag-
netisation and zero-field susceptibility were calculated by Yang in 1952. The
most important features thus is that the energy is a continuous function of
temperature, the specific heat diverges logarithmically at T = Tc, the mag-
netisation drops to 0 at T = Tc and the susceptibility diverges as a power
law at T = Tc.

1.3.2 In the presence of a time dependent magnetic field

The properties of the ising model in the presence of a time varying magnetic
field were first worked out in [6]. We summarise here the required results.
Dependence of the hysterisis loop on omega: In the limit Ω→ 0, the
hysterisis loop becomes a discontinuity about H = 0 and then evolves by
stretching out into the familiar loop and in the limit Ω → ∞ it becomes a
straight line, independent of the applied magnetic field.
Dependence of the hysterisis loop on amplitude: An analysis of the
monte carlo data shows that the hysterisis loop does not depend on ampli-
tude individually but on a ratio of the frequency of amplitude and frequency.
Dependence of the hysterisis loop on Temperature: The loop shrinks
as temperature increases.

2 Numerical results

2.1 Zero field results

The metropolis algorithm described in 1.2 was used to simulate the behaviour
of the ising model. The energy average was calculated by keeping the average
after every Monte Carlo Step (one Monte-Carlo step (MCS) consists of a
single sweep of N×N points on the lattice. Since the lattice points are chosen
randomly in our programme, some lattice points may be swept multiple times
and some none at all in one ’sweep.’) and the magnetisation is simply the
sum of the spins.

The specific heat and susceptibility are calculated using the formulas

C =
〈E2〉 − 〈E〉2

kBT 2
χ =

〈M2〉 − 〈M〉2

kBT
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Figure 1: Simulated results for the thermodynamics properties of the 2D ising
model. The various observables are plotted against temperature T in units of
J/KB. The values are calculated after 6000 MCS for a 20× 20 lattice in the
absence of a mganetic field.

The obtained numerical results are plooted in Figure 1 accordance with ex-
pected graphs described in section 1.3.1. The specific heat and susceptibility
expectedly diverge at around T ≈ 2.3.

2.2 Time dependent magnetic field

Once equilibrium has been attained, we turned on a time-varying magnetic
field H. The magnetic field was constructed by using the sinusoidal function
H(t) = H0sin(Ωt). The values for integral t where taken for one-period 2π

Ω

and then repeated cycles of the hysterisis loop were performed for the system
at constant temperature. Since the period is much smaller than the period
for the random number generator (for gfortran it is 2256 − 1), the loops will
differ through each cycle. Thus, we have plotted an average Hysteresis curve.

2.2.1 Dependence of the hysterisis loop on omega

The hysterisis loop becomes larger as omega increases and ultimately it’s
axis tilts and it ceases to represent a loop. A way to reach either infinity or
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Figure 2: A typical Hysterisis loop for a 20 × 20 lattice under the action of
a sinusoidal magnetic field with H0 = 5 and Ω = 0.01.The loop is averaged
over 955 cyles.

Figure 3: Hysterisis loops for Omega = 0.0001, 0.01, 10 and 10000000 re-
spectively (clockwise from top left).

0 could not be found using the sinusoidal magnetic field. It is easier Using a
constructed periodic magnetic field as in [6].

2.2.2 Dependence of the hysterisis loop on amplitude

It appears that as H0 increases, the hysterisis curve goes in the opposite
direction to omega i.e. it shrinks for large H0 and titls for small H0.

2.2.3 Dependence of the hysterisis loop on Temperature

Quite expectedly the loop shrinks with increase in temperature.
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Figure 4: Hysterisis loops for H0 = 0.2 and H0 = 100.

Figure 5: Hysteresis loops at four different temperatures, T = 0.6, 1.0, 1.5
and 2.0 respectively (clockwise from top left.)

8



Figure 6: Hysteresis loops for J = 0.02 and J = 1000 respectively.

2.2.4 Dependence of the hysterisis loop on interaction energy

For small JF the loop to the magnetic field almost taking the form of the
sinusoidal field. This is because for small JF the second term n the energy,
corresponding to the non-zero magnetic field dominates. For large JF simi-
larly the loop does not respond to the magnetic field at all as the first term
in the energy dominates.

3 Conclusions

Here I have investigated the properties of the hysterisis loop formed by a two
dimension ising model under the action of a sinusoidal external field. The
same thing has been done before using a constructed periodic magnetic field
in [6]. Their analysis is much better because their hand constructed field
allows the taking the limit Ω → 0 and Ω → ∞. Their analysis is also more
complete because they’ve calculated the error bars for the hysterisis graphs as
well taken more data points. Due to machine limitations ,I have been unable
to consider lattices larger than 20×20. As pointed out in their paper, a larger
lattice gives more accurate results. Nevertheless, their conclusions abut the
2D ising model has mostly been replicated here.
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