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Chapter 1

Keldysh Formalism

We start with a brief review of equilibrium quantum field theory before developing the
non-equilibrium approach.

1.1 Second Quantisation formalism

Second quantisation is simply a different formulation of quantum mechanics which
makes it easier to handle many body systems.

1.1.1 Identical Particles

Quantum Mechanics can be used to determine whether a group of particles are indistin-
guishable or not. Interchange of particles produces another solution for the Schrodinger
equation. Quantum mechanically it is impossible to keep track of the wavefunctions be-
cause they may overlap, thus identical particles must always be considered as a group.
An n-particle wavefunction of identical particles can by symmetric or anti-symmetric.
Particles which have symmetric wavefunctions are called bosons and can be shown to
have integral spin while those with anti-symmetric wavefunctions can be shown to have
half-integral spins and are called fermions.

1.1.2 Number representation

Since, identical particles should be treated as a group, the actual particle state is
does not matter rather the number of particles in a state does. So, we switch to the
representation, where the number of particles in a particular state ns gives the state,
|{ns}〉. We define annihilation and creation operators, a† and a, operators which add
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CHAPTER 1. KELDYSH FORMALISM 5

or remove particles from a particular state. We define the bosonic operators as:

a†i |n1, n2, ...., ni = n, ..., nN〉 =
√
N + 1) |n1, n2, ...., ni = n+ 1, ..., nN〉

a |n1, n2, ...., ni = n, ..., nN〉 =
√
N |n1, n2, ...., ni = n− 1, ..., nN〉

These satisfy the relation [a†, a]− = 1. Similarly, the fermionic operators would be
defined as

a†i |n1, n2, ...., ni = 0, ..., nN〉 = |n1, n2, ...., ni = 1, ..., nN〉
a |n1, n2, ...., ni = 1, ..., nN〉 = |n1, n2, ...., ni = 0, ..., nN〉

These satisfy the relation [a†, a]+ = 1 and a2 =
(
a†
)2

= 0, since removing or adding two
operators to a fermionic state is not possible from the exclusion principle. We now look
at a way to represent operators in this basis. For a one-body operator, in it’s diagonal
basis it has the form Ô = ΣN

i=0ôi. Suppose we assume a one-body operator is diagonal
in the |λ〉 basis. Then 〈λ′1, ..., λ′N |Ô|λ1, ..., λN〉 =

(
ΣN
i=0ôλi

)
〈λ′1, ..., λ′N |λ1, ..., λN〉 =

〈λ′1, ..., λ′N | (Σ∞λ=0ôλnλ) |λ1, ..., λN〉. The second quantised representation in the diagonal
basis is thus Ô = Σ∞λ=0ôλnλ = Σ∞λ=0ôλa

†
λaλ. In any arbitrary basis, we thus get the

relation Ô = Σλµν 〈µ|Ô|ν〉 a†µaν . This is the second quantised representation for a one
particle operator. Physically, this represents the situation that the operator takes a
particle in state ν and scatters it to µ. Similarly, a two particle operator can be written
as Ô = Σµµ′νν′ 〈µ, µ′|Ô|νν ′〉 a†µa

†
µ′aνaν′

1.2 The interaction “picture”

Apart from the well known Schrodinger and Heisenberg representations, one can also
work in the interaction representation where both the wavefunction and operators have
time dependency but the time evolution of the wavefunction is only governed by the
interacting part of the Hamiltonian (hence the name!).

Ô = eiH0tOe−iH0t (Interaction picture)

φ̂ = eiH0te−iHtφ

We denote the operator eiH0te−iHt by U and calculate it’s time dependence:

∂

∂t
U(t) = ieiH0t(H0 −H)e−iHt

= i ˆV (t)U(t)

(1.1)

We integrate both sides with respect to time

U(t) = 1− i
∫ t

0

dt1V̂ (t1)U(t1) (1.2)
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Repeatedly iterating gives us:

U(t) =
∞∑
n=0

(−i)n
∫ t

0

dt1

∫ t1

0

dt2.....

∫ tn−1

0

dtnV̂ (t1)V̂ (t2).....V̂ (tn)

= 1 +
∞∑
n=0

(−i)n

n!

∫ t

0

dt1

∫ t

0

dt2.....

∫ t

0

dtnT{V̂ (t1)V̂ (t2).....V̂ (tn)}

= T exp[−i
∫ t

0

dt1V̂ (t1)]

(1.3)

where T is the time ordering operator i.e. it sends operators with earlier time argument
to the right.1For two operators, the operator is defined as T{V̂ (t1)V̂ (t2)} = Θ(t1 −
t2)V̂ (t1)V̂ (t2) + Θ(t2− t1)V̂ (t2)V̂ (t1). Here Θ is the Heaviside step function2. We next
define the S-matrix (Scattering matrix) by

ψ̂(t) = S(t, t′)ψ(t′)

= S(t, t′)U(t′)ψ(0)

Thus,
S(t, t′) = U(t)U †(t′) (1.4)

1.3 Green’s function at T = 0 K

Green’s functions are required for dealing with systems where the Hamiltonian is not
exactly solvable. We start with a Hamiltonian, H = H0 + V where H0 can be solved
exactly. The term V represents the remaining part of H and usually has small effects.
Many-body problems usually proceed by starting with a system completely describable
byH0 and then introducing V and calculating it’s effects. Analogous to classical physics
they are named as such because they satisfy the wave equation with a Dirac delta in
homogeneity. We define the Green’s function as

G(r, t, r′, t′) = −i 〈|T{φ(t)φ†(t′)} |〉 (1.5)

Here, T represents the time ordering operator and |〉 represents the normalised ground
state of the system, an eigenstate of the full Hamiltonian H. However since the theory
is based on knowing the ground state of the full Hamiltonian |〉 we have to rely on the
Gell-Mann Low theorem which links the ground state of the full Hamiltonian to that
of the unperturbed Hamiltonian by

|〉 = S(0,−∞) |〉0 (1.6)

1The necessity of the time ordering operator comes from the possible non-commutativity of the
field operators at different times.We obviously want the earlier operator to act first.

2
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The physical justification for the above is that we start with the unperturbed system
as t → −∞ and adiabatically bring it t = 0 and switch on the interaction. Another
commonly made assumption is that the final state at t → ∞ is related to the ground
state of the unperturbed Hamiltonian by only a phase factor.3 This is not true for
systems which are not in equilibrium. There we cannot assume the system comes from
or goes to a state free of interactions. Thus we must look for another way of handling
the asymptotic limit, which brings us to the next section.

1.4 Green’s function at non-equilibrium

We can instead define the green’s function on a contour C, which starts and ends at
t = t0 goes along the real axis and passes through t and t′ only once. The contour
ordered Green’s function is defined as

G(r, t, r′, t′) = −i〈Tc{φ(t)φ†(t′)}〉 (1.7)

where Tc is the contour-ordering operator defined on the contour C. Since the times t
and t′ can lie on any of the two branches of the contour, equation (1.7) can be broken
into four different green’s functions. If we take the upper branch of the contour as C1

and the lower as C2 the definitions are:

• If t,t′ ∈ C1 then G(t, t′) = Gc(t, t
′) = −i〈T{φ(t)φ†(t′)}〉

• If t ∈ C1,t
′ ∈ C2 then G(t, t′) = G<(t, t′) = −i〈φ(t)φ†(t′)〉

• If t ∈ C2,t
′ ∈ C1 then G(t, t′) = G>(t, t′) = −i〈φ†(t′)φ(t)〉

• If t,t′ ∈ C2 then G(t, t′) = Gc̃(t, t
′) = −i〈T̃{φ(t)φ†(t′)}〉

T̃ represents the anti-time ordering operator. The four green’s functions are linked by
the relation Gc +Gc̃ = G< +G>. For our convenience we further define the advanced
and retarded green’s functions:

• Gr(t, t′) = iθ(t′ − t)〈{φ(t)φ†(t′)}〉 = θ(t′ − t)[G<(t, t′)−G>(t, t′)]

• Ga(t, t′) = −iθ(t− t′)〈{φ(t)φ†(t′)}〉 = θ(t− t′)[G>(t, t′)−G<(t, t′)]

Thus the equilibrium and non-equilibrium theories are structurally equivalent and only
differ in the replacement of real integrals by contour ones.

1.4.1 Analytic continuation

For computation purposes, we need to express the contour integral in terms of real
integrals. We can do this using the simple rules given by Langreth in [4]. Suppose

3See Appendix A for rigorous arguments for the above
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Figure 1.1: Deformation of the contour. Image from [14]

we have a term of the form C(t′, t) =
∫
C
dτA(t′, τ)B(τ, t). Let t′ be in the upper half

of the contour and t2 be in the lower half of the contour. We want expressions for
the analytic continuations of C(t′, t), C<(t′, t) and C>(t′, t). To obtain the expres-
sions we first deform the contours as shown in Figure 1.1. Now we split the integral
into C(t′, t) =

∫
C1
dτA(t′, τ)B(τ, t) +

∫
C2
dτA(t′, τ)B(τ, t). We consider the first in-

tegral
∫
C1
dτA(t′, τ)B(τ, t). The integration variable τ is always in the first contour

thus, we can write B(τ, t) as B<(τ, t). We split the integral into the two branches
of C1. (Note that we assume both contours C1 and C2 start and end at t0 → ∞.)

This gives us
∫
C1
dτA(t′, τ)B<(τ, t) =

∫ t′
−∞ dτA(t′, τ)B<(τ, t) +

∫ −∞
t′

dτA(t′, τ)B<(τ, t).
Using a similar logic as the previous one we can replace A(t′, τ) with A>(t′, τ) and
A<(t′, τ) in the two integrals respectively. This finally gives us

∫
C1
dτA(t′, τ)B(τ, t) =∫ −∞

∈fty dτA
r(t′, τ)B<(τ, t). Using a similar argument for the second term we obtain the

relation C< =
∫∞
−∞[ArB< + A<Ba]. We can use analogous arguments for C>(t′, t).

Similarly, we can extend the argument easily to products of three terms and so on.

The results are summarised in table 1.1 as given in [14].

1.4.2 Fluctuation-Dissipation theorem

The spectral function defined as

A(k, ω) = i[G>(k, ω)−G<(k, ω)] (1.8)

is useful for computing the density of states

ρ(ω) =

∫
d3k

(2π)3
A(k, ω) (1.9)

and has the property ∫
dω

2π
A(k, ω) = 1 (1.10)
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Contour Real axis

C =
∫
C
AB

C< =
∫
t
[ArB< + A<Ba]

Cr =
∫
t
ArBr

D =
∫
C
ABC

D< =
∫
t
[ArBrC< + ArB<Ca + A<BaCa]

Dr =
∫
t
ArBrCr

C(τ, τ ′) = A(τ, τ ′)B(τ, τ ′)
C<(t, t′) = A<(t, t′)B<(t, t′)

Cr(t, t′) = A<(t, t′)Br(t, t′) + Ar(t, t′)B<(t, t′) + Ar(t, t′)Br(t, t′)

D(τ, τ ′) = A(τ, τ ′)B(τ ′, τ)
D<(t, t′) = A<(t, t′)B>(t′, t)

Dr(t, t′) = A<(t, t′)Ba(t′, t) + Ar(t, t′)B<(t′, t)

Table 1.1: Langreth rules

A very simple manipulation will allow us to write the Green’s function in terms of the
spectral function. We start with the definition of G< in Fourier basis.

G<(ω) = i

∫ ∞
−∞

dteiωt 〈ψ†(0)ψ(t)〉 (1.11)

We can insert a complete basis of states in between to get

G<(ω) = i

∫ ∞
−∞

dteiωt
∑
n,m

〈n|ρψ†(0)|m〉 〈m|eiHtψ(0)e−iHt|n〉

=
i

Z

∫ ∞
−∞

dteiωt
∑
n,m

e−β(En−µnn)ei(Em−En)t 〈n|ψ†(0)|m〉 〈m|ψ(0)|n〉

=
i

Z

∑
n,m

2πδ(ω + Em − En)e−β(En−µnn) 〈n|ψ†(0)|m〉 〈m|ψ(0)|n〉 (1.12)

Similarly we will get

G>(ω) =
i

Z

∑
n,m

2πδ(ω + En − Em)e−β(Em−µnm) 〈n|ψ(0)|m〉 〈m|ψ†(0)|n〉 (1.13)

Combining the two we get

G>(ω) = −eβ(ω−µ)G<(ω) (1.14)

We can now use the definition of the spectral function in equation 1.8 to get the relation

G<(ω) =
iA(ω)

eβ(ω−µ) + 1
(1.15)
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This is known as the fluctuation-dissipation theorem because it links the part which
describes the fluctuation of the system (G<) to the dissipative part A. The propor-
tionality factor in (1.15) is simply the Fermi function.



Chapter 2

Mesoscopic Transport

A transport problem concerns the flow of current through a particular substance. Work
on electron transport in mesoscopic systems only began in the 1980’s. There are
many important length scales at play in mesoscopic systems and at low temperatures
(50mk− 4K), the mesoscopic regime is usually characterised by the following relation
between length scales [2]

a0 � λF . l0 < L < lφ . lin (2.1)

where

• a0 is the Bohr radius

• λF is the Fermi wavelength

• l0 is the elastic mean free path

• L is the sample size

• lφ is the coherence length

• lin is the energy relaxation length

There are two main viewpoints to the transport problem [7].

1. The current is a response to an externally applied electrical field

2. Carrier flow causes a buildup on the boundaries which generates an inhomogenous
electric field across the sample. The field is a consequence of the current flow.

The first viewpoint leads to the familiar transport theories of Drude or Boltzmann to
be found in any textbook of solid state physics. [8] [9]. The second viewpoint is known
as the Landauer approach and is the focus of this chapter.

11
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2.1 Landauer Formula

Lanaduer in [6] formulated an expression for the current through a disordered region
of non-interacting electrons. He based this on the approach he pioneered in [5], that
scatterers could induce local fields which act on the current carriers. His approach
consisted of the following approximations which we present here:

Approximation 1 We consider the battery to simply act as a reservoir of electrons.
The energy required to extract an electron from the reservoir and bring it into
the system is measured by the electrochemical potential of the reservoir. The
potential bias across the system is thus the difference in electrochemical potentials
per unit charge.

V =
µL − µR

e

Our problem is reduced to the sample sandwiched between large materials con-
nected to an open reservoir.

Approximation 2: We next assume that the system has a steady-state solution and
we wait long enough to perform our calculation at the steady state. The steady
state condition for the current holds at all instants of time

〈Î〉t = 〈Î〉 = constant

Approximation 3: Our second approximation of steady state simply relegates the
role of the reservoirs to that of preparing and sending wave-packets without
changing the current in time. We can now replace our first approximation with
that of a closed system having scattering boundary conditions at infinity.

Approximation 4: We consider a mean field approximation for the whole Hamilto-
nian.

Ĥ = Ĥmf + V̂ (2.2)

where Ĥmf is the part of the Hamiltonian experiencing the mean field of other
electrons and V̂ is the interaction beyond the electrons. Thus, we are now left
with a one-particle problem.

Approximation 5 We assume that the channels through which the scattering occurs
are independent, that is the off-diagonal elements of the density matrix are zero.
This assumes that the system interacts with the environments quickly enough to
dissipate all correlations. Finally, we neglect all possible differences between elec-
trons injected into the system from the terminal. We assume, that the electrons
injected from the left (right) reservoir come from a local equilibrium distribution

fL(R) =
1

e
E−µL(R)
kBT + 1

(2.3)
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We will now derive expressions for the total current through the system and it’s con-
ductance. Firstly, we consider the general case of when the right and left leads are
differently populated. Following approximation 5, the density matrix of the system
can be written as an incoherent sum of left and right moving electrons.

ρ =
∑
L

|ψL〉 fL 〈ψR|+
∑
R

|ψR〉 fR 〈ψR| (2.4)

The current is then calculated as

I = tr(ρÎ) = tr((
∑
L

|ψL〉 fL 〈ψL|+
∑
R

|ψR〉 fR 〈ψR|)Î)

= tr(ρÎ) = tr((
∑
L

|ψL〉 fL 〈ψL|+
∑
R

|ψR〉 fR 〈ψR|)Î)

Now we evaluate the expression

=
∑
i

{
∑
L

〈Ψiki |ψL〉 fL 〈ψL|Î|Ψiki〉+
∑
R

〈Ψiki|ψR〉 fR 〈ψR|Î|Ψiki〉}

=
∑
L

〈ψL|Î|ψL〉 fL +
∑
R

〈ψR|Î|ψR〉 fR

= ILfL + IRfR

Deep into the left lead, the wavefunction is the original left moving wavepacket plus a
linear combination of all reflected wavepackets.

Ψiki = ψiki +

NC
L∑

f=1

Rifψfkf (2.5)

Deep into the right lead, the wavefunction is simply the sum of all transmitted wavepack-
ets

Ψiki =

NC
R∑

f=1

Tifψfkf (2.6)

Evaluating the current deep in the leads we get

IL(Ei) = Ii(Ei)

1−
NC
L∑

f=1

Rif

 (2.7)

IR(Ei) = Ii(Ei)

NC
R∑

f=1

Tif (2.8)
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where Ii(Ei) = vi
Lx

and
∑NC

L
f=1Rif +

∑NC
R

f=1 Tif = 1 Now to get the total current we need
to integrate over all energy using the density of states.

IL = 2e

∫
dE

NC
L∑

f=1

NC
R∑

f=1

Di(Ei)Ii(Ei)Tif =
e

π~

∫
dETLR(E) (2.9)

IR = −2e

∫
dE

NC
L∑

f=1

NC
R∑

f=1

Di(Ei)Ii(Ei)Tif = − e

π~

∫
dETRL(E) (2.10)

Thus, the current is

I =
e

π~

∫ ∞
−∞

dE[fL(E)− fR(E)]T (E) (2.11)

where T (E) = TRL(E) = TLR(E) due to steady state. To calculate the conductance
between two probes, we take the zero bias limit of (2.11). When µL−µR → 0 we have
fL = fR + dfR

dE
(µL−µR) + .... At zero temperature, the derivative of the Fermi function

is a Dirac delta. Thus, we have

I =
2e

~

∫ ∞
−∞

dEδ(E − µR)(µL − µR)T (E)

=
2e2

~
V T (µR)

Finally using G = I
V

, we get:

G2-probe =
2e2

h

NR
c∑

i=1

NL
c∑

i=1

Tif (2.12)

Thus the conductance can be simply written in terms of the transmission of non-
interacting electrons. The observation of the quantised conductance in electron gas
in 1988 [3] brought the largely ignored Landauer formula into prominence and it was
generalised by the work of Meir and Wingreen. We can now use some results from
single particle scattering theory[7][11] to recast (2.11) into a form which will help us
compare our results with the Meir-Wingreen formula. The transmission coefficients
can be linked to S-matrix elements using the T-matrix.[7][10][11]

TLR(E) =

NL
C∑

i=1

NR
C∑

f=1

Tif = Tr(τ †τ) (2.13)

The S-matrix elements are linked to the Green’s function giving us the relations

TLR = Tr{Γ̂RĜaΓ̂LĜ
r} (2.14)

TRL = Tr{Γ̂LĜaΓ̂RĜ
r} (2.15)
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The Gamma operators are related to the self-energy

Γ̂R = −2Im{Σ+
R(z)} = −2Im{V ∗G(z)V } (2.16)

Γ̂L = −2Im{Σ+
L(z)} = −2Im{V ∗G(z)V } (2.17)

The final result is

I =
e

π~

∫ ∞
∞

dE[fL(E)− fR(E)]Tr{Γ̂RĜaΓ̂LĜ
r} (2.18)

2.2 Meir-Wingreen formula

A similar result for interacting electrons was developed by Meir and Wingreen in [12] by
using the same assumptions but instead restricting the mean field assumptions upto
the lead only. The description of the resulting non-equilibrium situation inside the
conductor requires the use of the Keldysh formalism described in Chapter 1.

Approximation We take the ’partition approach’ that is we assume that at t→ −∞
the leads and the central region are separated and they are at thermal equilibrium
respectively.

The Hamiltonian can be written down as the sum of three terms: the non-interacting re-
gion of the leads(Hleads =

∑
k;α∈L,R εkαc

†
kαckα), the coupling between the central region

(Hcon =
∑

n,k;b∈L,R Vn,kbc
†
kbdn) and the electrodes and the interacting central region,

Hcent =
∑

n

(
{d†n}{dn}

)
. The full Hamiltonian is thus

Ĥ =
∑

k;α∈L,R

εkαc
†
kαckα +

∑
n,k;b∈L,R

Vn,kbc
†
kbdn + V ∗n,kbd

†
nckb +

∑
n

(
{d†n}{dn}

)
(2.19)

The current that flows from the left electrode can be defined by the expectation value
of the rate of change of the number of electrons that flows into the central region, given
by the number operator (NL =

∑
k;α∈L c

†
kαckα).

IL = −e
〈
dNL

dt

〉
= −ie

〈
[Ĥ,NL]

〉
From the Heisenberg equation,

= −ie
〈

[V̂LC + V̂ †LC , NL]
〉

Since the other terms commute,

= −ie
〈

[V̂LC , NL]
〉

+
〈

[V̂ †LC , NL]
〉

= −ie

〈 ∑
n,k;α∈L

∑
j;β∈L

Vn,kα[c†kαdn, c
†
jβcjβ]

〉
+

〈 ∑
n,k;α∈L

∑
j;β∈L

V ∗n,kα[d†nckα, c
†
jβcjβ]

〉
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= −ie

〈 ∑
n,k;α∈L

∑
j;β∈L

Vn,kα[c†kα, c
†
jβcjβ]dn

〉
+

〈 ∑
n,k;α∈L

∑
j;β∈L

V ∗n,kαd
†
n[ckα, c

†
jβcjβ]

〉

= −ie

〈 ∑
n,k;α∈L

∑
j;β∈L

−Vn,kαc†jβ{c
†
kα, cjβ}dn

〉
+

〈 ∑
n,k;α∈L

∑
j;β∈L

V ∗n,kαd
†
n{ckα, c

†
jβ}cjβ

〉

= ie

〈 ∑
n,j;β∈L

Vn,jβc
†
jβdn − V

∗
n,jβd

†
ncjβ

〉
using the anti commutation relations,

= ie
∑

n,j;β∈L

Vn,jβ

〈
c†jβdn

〉
− V ∗n,jβ

〈
d†ncjβ

〉
(2.20)

The operator terms in the above expression look like the lesser Green’s functions defined
in . We thus define them as such

G<
n,kα(t− t′) = i

〈
c†kα(t′)dn(t)

〉
(2.21)

G<
kα,n(t− t′) = i

〈
d†n(t′)ckα(t)

〉
(2.22)

The current is thus defined in terms of the lesser Green’s function.

I = e
∑

n,k;α∈L

Vn,kαG
<
n,kα(t− t′)− V ∗n,kαG<

kα,n(t− t′) (2.23)

To calculate the lesser Green’s function, we use the equation of motion of full’s green’s
function defined in . We thus get,

i
dGn,kα

dt
=

〈
T

{
dc†kα
dt

dn

}〉
(2.24)

Using the Heisenberg Equations of motion, we obtain,

i
dGn,kα

dt
=
〈
T
{
−i[c†kα, Ĥ]dn

}〉
= −i

〈
T
{

[c†kα, Ĥleads]dn

}〉
− i
〈
T
{

[c†kα, Ĥcon]dn

}〉
− i
〈
T
{

[c†kα, Ĥcen]dn

}〉
= −i

〈
T
{

[c†kα, Ĥleads]dn

}〉
− i
〈
T
{

[c†kα, Ĥcon]dn

}〉
We replace and simplify the first term

i
dGn,kα

dt
= −i

〈
T

{∑
j;β∈L

εjβ[c†kα, c
†
jβcjβ]dn

}〉
− i
〈
T
{

[c†kα, Ĥcon]dn

}〉
= −i

〈
T
{
εkαc

†
kαdn

}〉
− i
〈
T
{

[c†kα, Ĥcon]dn

}〉
= −εkαGn,kα − i

〈
T
{

[c†kα, Ĥcon]dn

}〉
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We can similarly simplify the last term and by defining one final Green’s function

Gn,m(t− t′) = i
〈
T
{
d†mdn

}〉
(2.25)

we obtain (
−εkα − i

d

dt

)
Gn,kα =

∑
m

Gn,m(t− t′)V ∗m,kα (2.26)

The coefficient of Gn,kα is simply the inverse of the green’s function associated with
the lead gkα. Thus we get the equation:

Gn,kαg
−1
kα =

∑
m

Gn,m(t− t′)V ∗m,kα

which simplifies to,

Gn,kα =
∑
m

∫
dt1Gn,m(t− t1)V ∗m,kαgkα(t1 − t′)

Applying the Langreth rules of section 1.4, we get,

Gn,kα =
∑
m

∫
dt1V

∗
m,kα[Gr

n,m(t− t1)g<kα(t1 − t′) +G<
n,m(t− t1)gakα(t1 − t′)]

Taking the Fourier transform, we thus finally obtain the lesser green’s function

G<
n,kα(ω) =

∑
m

V ∗m,kα[Gr
nm(ω)g<kα +G<

nm(ω)gakα] (2.27)

The fluctuation-dissipation theorem gives us an expression for g<kα as

g<kα(ω) = 2πifL(ω)δ(ω − εkα) (2.28)

g>kα(ω) = −2πi[1− fL(ω)]δ(ω − εkα) (2.29)

We first take the Fourier transform of (2.23) to get

I = e
∑

n,k;α∈L

∫ ∞
−∞

dω

2π
Vn,kαG

<
n,kα(ω)− V ∗n,kαG<

kα,n(ω) (2.30)

We now plug in (2.27) and simplify using (2.28) to get

I = e
∑

n.k;α∈L

∫ ∞
−∞

dω

2π
Vn,kαG

<
n,kα(ω) + V ∗n,kα(G<

n,kα(ω))∗

= 2e
∑

n,k;α∈L

∫ ∞
−∞

dω

2π
Re{Vn,kαG<

n,kα(ω)}

= 2e
∑

m,n,k;α∈L

∫ ∞
−∞

dω

2π
Re{Vn,kαV ∗m,kα[Gr

nm(ω)g<kα +G<
nm(ω)gakα]}

(2.31)
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We define a level-width function by:

ΓL(ε)mn = 2π
∑
α

ρα(ε)Vn,kαV
∗
m,kα (2.32)

We transform the momentum summation in (2.31) into an energy integration with the
density of states a ρα(ε) and use (2.32) and (2.28) to get:

IL = 2e
∑
m,n

∫ ∞
−∞

dω

2π

∫ ∞
−∞

dερα(ε)Re{Vn,α(ε)V ∗m,α(ε)[Gr
nm(ω))g<(ω) +G<

nm(ω)ga(ω)]}

= 2e
∑
m,n

∫ ∞
−∞

dω

2π

∫ ∞
−∞

dεRe{ΓL(ε)mn[Gr
nm(ω))g<(ω) +G<

nm(ω)ga(ω)]}

= 2e

∫ ∞
−∞

dω

2π

∫ ∞
−∞

dεRe{Tr
(

ΓL(ε)

2π
[Gr(ω))g<(ω) +G<(ω)ga(ω)]

)
}

= e

∫ ∞
−∞

dω

2π

∫ ∞
−∞

dεTr

(
ΓL(ε)

2π
[Gr(ω)g<(ω) +G<(ω)ga(ω)−G<(ω))gr(ω)−Ga(ω)g<(ω)]

)
= ie

∫ ∞
−∞

dε

2π
Tr (ΓL(ε)[fL(ε)(Gr(ε)−Ga(ε)) +G<(ε)])

(2.33)

A similar expression can be found for IR and using I = 1
2
(IL − IR) we get

I =
ie

2

∫ ∞
−∞

dε

2π
Tr (ΓL(ε)[fL(ε)(Gr(ε)−Ga(ε)) +G<(ε)]− ΓR(ε)[fR(ε)(Gr(ε)−Ga(ε)) +G<(ε)])

=
ie

2

∫ ∞
−∞

dε

2π
Tr ((ΓL(ε)fL(ε)− ΓR(ε)fR(ε))(Gr(ε)−Ga(ε)) + (ΓL(ε)− ΓR(ε))G<(ε))

(2.34)

(2.34) is the Meir-Wingreen formula. Further simplification can be achieved if we take
ΓL = λΓR. Since, IL = −IR, we can write I = IL

1+λ
− λIR

1+λ
. Thus, we get:

I = ie

∫ ∞
−∞

dε

2π
Tr

(
λΓR(ε)[fL(ε)(Gr(ε)−Ga(ε)) +G<(ε)]

1 + λ
− λΓR(ε)[fR(ε)(Gr(ε)−Ga(ε)) +G<(ε)]

1 + λ

)
= ie

∫ ∞
−∞

dε

2π
Tr

(
λΓR(ε)(fL(ε)− fR(ε))(Gr(ε)−Ga(ε))

1 + λ

)
= ie

∫ ∞
−∞

dε

2π
(fL(ε)− fR(ε))Tr

(
λΓR(ε)

1 + λ
(Gr(ε)−Ga(ε))

)
= ie

∫ ∞
−∞

dε

2π
(fL(ε)− fR(ε))Tr

(
ΓL(ε)ΓR(ε)

ΓL(ε) + ΓR(ε)
(Gr(ε)−Ga(ε))

)
(2.35)
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Non-interacting central region

To check our formula, we consider a non-interacting central region. If it is correct, we
should get back the original Landauer formula. The Hamiltonian then takes the form:

Ĥ =
∑

k;α∈L,R

εkαc
†
kαckα +

∑
n,k;b∈L,R

Vn,kbc
†
kbdn + V ∗n,kbd

†
nckb +

∑
n

εnd
†
ndn (2.36)

The Dyson and Keldysh equations thus give us:

G< = Ga(E)Σ<(E)Gr(E) (2.37)

Using the lesser self energy equation we get

Σ<(E) = i[fl(E)ΓL(E) + fR(E)ΓR(E)] (2.38)

Substituting these into (2.34) gives us the result of (2.18).

I =
e

π~

∫ ∞
∞

dE[fL(E)− fR(E)]Tr{Γ̂RĜaΓ̂LĜ
r}

2.3 The rate equation

(2.34) is an exact solution for the system but it is still a nontrivial matter to use it
practically. This, is because we still need to calculate the Green’s function for the full
interacting Hamiltonian. Some properties of a given system may however still be stud-
ied by using approximate results. We look at one such approximation derived using
the master equation approach.

We consider a Hamiltonian, H = Hsys + Hres + HInt where the terms in order are
the Hamiltonian for a system, for a reservoir and for the coupling between them. The
total density matrix thus follows the von-Neumann equation dρtot

dt
= −i[H, ρtot]. Our

goal is to find the master equation for the density matrix of the subsystem by tracing
out the degrees of freedom of the reservoir ρS(t) = trres(ρtot). If we now switch to the
interaction picture, we get the following equation of motion

dρI
dt

= −i[Hint, ρI ] (2.39)

We can integrate it to get

ρI(t) = ρI(0)− i
∫ t

0

dt′[Hint, ρI ] (2.40)

Henceforth, we’ll drop the label I and assume that all operators are in the interaction
picture unless specified. For our initial condition, we assume that the interaction has
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been turned on at t = 0 thus at t = 0, ρ(0) = ρsys(0)⊗ ρ0res. Here, ρ0res represents the
density matrix of the reservoir at equilibrium. If we now substitute (2.40) into (2.39)
and take the trace over the leads on both sides we get:

dρsys
dt

= −
∫ t

0

dt′trres[Hint(t), [Hint(t
′), ρ(t′)]] (2.41)

We take that the initial condition implies that the term, trres[Hint, ρ] = 0. 1 We can
continue the process to get an expansion in higher order terms of ρ, but we’ll stop at
the second order and make a critical assumption. We assume that the reservoir has
many more degrees of freedom than the system and the effect of any interaction by the
system on the reservoir dissipates quickly and does not react back on the system i.e.
R remains in thermal equilibrium.[16] This permits us to write the terms in (2.41) as
trres[Hint(t), [Hint(t

′), ρ(t′)] = ρsys(t
′)⊗trres[Hint(t), [Hint(t

′), ρres(t
′)]. A much stronger

form of the above assumption is often taken in the literature, ρ(t) = ρsys(t)⊗ ρ0res.But
this is not necessary and may also be superfluous.[17][18] This is known as the weak-
interaction approximation or Born approximation, in line with it’s use in scattering
theory. We get:

dρsys
dt

= −
∫ t

0

dt′trres[Hint(t), [Hint(t
′), ρsys(t

′)⊗ ρ0res]] (2.42)

The second critical assumption we make is known as the Markov assumption following
it’s use in probability theory. Analogously thus we posit that the behaviour of the
system depends only on it’s state at the present time and not on it’s history of evolution.
This is equivalent to replacing ρsys(t

′) = ρsys(t) in (2.42). The physical basis of this
assumption is that the thermal time scale is much smaller than the time scale of the
system dynamics.2This allows to replace the lower limit of the integrand to −∞ to get
the final equation:

dρsys
dt

= −
∫ ∞
0

dt′trres[Hint(t), [Hint(t− t′), ρsys(t)⊗ ρ0res]] (2.43)

This is the Wagness-Bloch-Redfield master equation.

1This is true for the system we will consider, since the interaction Hamiltonian will contain only a
single reservoir electron operator, each term will cause a change in the electron number of the state
and the resulting trace will be zero.

2See [16] and [17] for an in-depth discussion of the Markov approximation.
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Applications

3.1 Single quantum dot

Having gone through two equivalent ways of looking at our electrode-nanonjunction-
electrode we will now try to apply our results in to a concrete system: a single quantum
dot coupled to leads with different chemical potentials and temperatures. The Hamil-
tonian of the system H = Hlead +Hdot(s) +Hint. We will model the single quantum dot
system using an Anderson-type model

Hint =
∑
σ

ε0d
†
σdσ + Un↑n↓ (3.1)

This was done using the Meir-Wingreen formula in [12] and [13] 1. Here we will look
at the results using the rate equation method.

3.1.1 Rate equation formalism

We will now simplify the (2.43) to a simpler form by assuming a the above Hamiltonian.
Next,we use the relations ρdot,I(t) = e(iHdott)ρ(t)e(−iHdott) andHhyb,I = e−i(Hleads+Hdot)tHhybe

i(Hleads+Hdot)t

and replace them in (2.43) to get

ρ̇(t) = −i[Hdot, ρdot(t)]−
∫ ∞
0

dt′trleads([Hhyb, [e
i(Hleads+Hdot)t

′
Hhybe

−i(Hleads+Hdot)t′ , ρdot⊗ρ0leads]])

(3.2)
By introducing dot states |n〉 and lead states ||i〉〉 we can bring the equation to a form
which resembles the rate equation.

We now assume the density matrix is diagonal in the dot state basis. This is possible
because the off-diagonal elements of the density matrix represent the coherence between
different sub-states of the system. In general, if two states are related by an observable

1Relevant derivations are also worked out in [7] and [14]

21
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which strongly couples with the environment (such as charge) then the off-diagonal
elements rapidly decay.2. Taking the diagonal matrix element of the equation, we get

ρ̇dotmm =
∑
i

∫ ∞
0

dt′ 〈〈i|| 〈m| [Hhyb, [e
i(Hleads+Hdot)t

′
Hhybe

−i(Hleads+Hdot)t′ , ρdot⊗ρ0leads]] |m〉 ||i〉〉

(3.3)
In the second term after opening the commutator bracket, we can simply term by term.
We show here the first term

=
∑
i

∫ ∞
0

dt′ 〈〈i|| 〈m|Hhybe
i(Hleads+Hdot)t

′
Hhybe

−i(Hleads+Hdot)t′ρdot ⊗ ρ0leads |m〉 ||i〉〉

=
∑
p

∑
ij

∫ ∞
0

dt′ 〈〈i|| 〈m|Hhybe
i(Hleads+Hdot)t

′ |p〉 ||j〉〉 〈〈j|| 〈p|Hhybe
−i(Hleads+Hdot)t′ρdot ⊗ ρ0leads |m〉 ||i〉〉

=
∑
pq

∑
ij

∫ ∞
0

dt′ei(Ep+εj)t
′ 〈〈i|| 〈m|Hhyb |p〉 ||j〉〉 〈〈j|| 〈p|Hhybe

−i(Hleads+Hdot)t′ |q〉 〈q| ρdot ⊗ ρ0leads |m〉 ||i〉〉

=
∑
pq

∑
ij

∫ ∞
0

dt′ei(Ep+εj−Eq−εm)t′ 〈〈i|| ρ0leads ||i〉〉 〈〈i|| 〈m|Hhyb |p〉 ||j〉〉 〈q| ρdot |m〉 〈〈j|| 〈p|Hhyb |q〉 ||i〉〉

= π
∑
pq

∑
ij

〈〈i|| 〈m|Hhyb |p〉 ||j〉〉 〈q| ρdot |m〉 〈〈i|| ρ0leads ||i〉〉 〈〈j|| 〈p|Hhyb |q〉 ||i〉〉 δ(Ep + εj − Eq − εm)

Simplifying each of the four terms one by one gives us

ρ̇dotmm = −π
∑
pq

∑
ij

{〈〈i|| 〈m|Hhyb |p〉 ||j〉〉 〈q| ρdot |m〉Wi 〈〈j|| 〈p|Hhyb |q〉 ||i〉〉 δ(Ep+εj−Eq−εi)

− 〈〈i|| 〈m|Hhyb |p〉 ||j〉〉 〈p| ρdot |q〉Wj 〈〈j|| 〈q|Hhyb |m〉 ||i〉〉 δ(Eq + εj − Em − εi)
− 〈〈i|| 〈m|Hhyb |p〉 ||j〉〉 〈p| ρdot |q〉Wj 〈〈j|| 〈q|Hhyb |m〉 ||i〉〉 δ(Em + εi − Ep − εj)
+ 〈〈i|| 〈p|Hhyb |q〉 ||j〉〉 〈m| ρdot |p〉Wi 〈〈j|| 〈q|Hhyb |m〉 ||i〉〉 δ(Em + εi − Eq − εj)}

(3.4)

Since the off-diagonal elements of the density matrix are 0, the only terms that remain
in the sum are for q = m or p = m. So the 2nd and 3rd terms cancel out leaving us
with

Ṗm = −π
∑
ij

∑
p

|{〈〈i|| 〈m|Hhyb |p〉 ||j〉〉 |2(WiPm −WjPp)δ(Ep + εj − Em − εi) (3.5)

Defining the transition rate as Rn→m ≡ π
∑

ijWj|{〈〈i|| 〈m|Hhyb |p〉 ||j〉〉 |δ(Ep + εj −
Em − εi) gives us

ṗm =
∑
n

Rn→mPn −
∑
n

Rm→nPm (3.6)

2See [17] and the subsequently cited Zurek paper
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This is the rate equation. We can now link the first term in the transition rate to the
Fermi function using the definition

trleads(c
†
kbe

iHleadst
′
ckbe

−iHleadst′) = −iG<
kb(−t′) (3.7)

The fluctuation dissipation theorem links the lesser green’s function to the spectral
function

G<
αkσ = if(ω − µα)Aαkσ(ω − µα) (3.8)

This finally leads us to the form

dpm
dt

=
∑
n

Wn→mpn −
∑
n

Wm→npm (3.9)

where,

Wn→m =
∑
x=L,R

f(em − en − µx)

[ ∑
σ,i,j=A,B

Γxijσ 〈m|d†iσ|n〉 〈n|djσ|m〉

]
(3.10)

Weak coupling regime

In the weak coupling regime, Γ << kBT we take Γ to be constant and solve the rate
equation. For a single quantum dot, connected to two electrodes at different potential
and temperature we get the following variation for the current versus temperature dif-
ference.

Figure 3.1: A single interacting quantum dot, with parameters Γ = T/20, U = 30T ,
ε = 10T , µL = 28T and µR = 22T .

The maxima of the current occurs due to the fact that the the current flows in differ-
ent directions through the two energy levels. The direction of the current through a
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particular channel solely depends on the value of the Fermi function at that energy.
This is the minimum setup required for the non-monotic dependence of current on the
temperature difference.

3.2 The double quantum dot system

Once again for a system of double quantum dots we will look at the setup of two
quantum dots connected parallely to reservoirs at different potential and temperature.

3.2.1 Non-interacting dots

For non-interacting dots the Hamiltonian is given by

Hdot =
∑
i=A,B

εid
†
idi (3.11)

We compare the results with the single quantum dot of the previous chapter in figure
3.2. The nature of the graphs are identical with a scaling behaviour. This behaviour
can be attributed to the spin degeneracy of the levels in the single quantum dot.

Figure 3.2: Comparison of the current flowing through a single interacting quantum dot
versus a double non-interacting quantum dot connected in parallel, with parameters
Γ = T/20, ε = 10T , µL = 28T and µR = 22T . The energy levels differ by 30T
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(a) (b)

Figure 3.3: J vs ∆T for two different interaction strengths U0 = U1 = U = 100T and
300T respectively. Other parameter values: Γ = T/10, εA = 10T , εB = 40T , µL = 20T ,
µR = 30T .

3.2.2 Interacting dots

For interacting dots connected in parallel, we take the central Hamiltonian to be

Hdot =
∑
σ

i=A,B

εid
†
iσdiσ + U0

∑
i=A,B

n̂i↓n̂i↑ + U1n̂An̂B (3.12)

The results of solving the rate equation for two different interaction strengths are given
in 3.3. Similar to the single quantum dot, we once again have a maxima before the
current falls off. Competing channels and their respective alignment are at play here
again. The non-monotic dependence of the current on temperature can be exploited
for energy harvesting using the quantum dots. This aspect is explored in [19].



Chapter 4

Summary and further work

In this project we have explored the various ways of calculating the current flowing
through a nanosystem connected to two reservoirs with a potential and temperature
difference. We started by studying a fully non-interacting result called the Landauer
formula and then exploring the work of Meir and Wingreen who considered only the
central region to be interacting. To make the final solution computationally tractable
we look at a first order approximation of the current derived using a master equation
formalism. Finally, we calculated the current for a couple of simple examples. The rate
equation method we finally used has a drawback of only working in the weak coupling
limit Γ << kBT . A lot of interesting phenomena using quantum dots such as Kondo-
like behaviour cannot be studied in this regime. Thus, other approaches such as NRG
or Slave boson methods have been employed which can capture the relevant physics.
[20][21][22][23][24] These methods are however more computationally intensive. In the
future I hope to learn and employ these methods.

26
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Quantum Mechanics of transport

We define the quantum mechanical current operator and discuss some quantum me-
chanics following [7] and [25]. The current density operator is defined as

ĵ =
1

2

∑
i

δ(r̂ − r̂i)v̂i + v̂iδ(r̂ − r̂i) (A.1)

The corresponding current operator is then defined as

Î =

∫
S

dS · ĵ(r̂, t) (A.2)

The spectrum of the current operator consists of discrete eigenvectors corresponding
to confined currents as well as continuum values.The eigenstates of I are not square-
integrable but we can construct states with a small interval δI of current

|ψδI〉 =
1√
δI

∫ I+δI

I

dI |ψI〉 (A.3)

and these are square-integrable and belong to the Hilbert space. They are also or-
thonormal

〈ψδI′ |ψδI〉 = δI′I (A.4)

For a many particle system in general, the value of current is not enough to specify the
complete system and we usually need other observables. Thus, current measurement
only allows us to know the states statistically and we have to resort to using the density
matrix formalism.
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Appendix B

The Gell-Mann Low theorem

We provide here a proof of the Gell-Mann Low [26] theorem following [15]:

Theorem Consider a system described by a Hamiltonian H = H0 + e−ε|t|HI , where
HI = λV for some coupling constant λ. If the following terms exists to all orders
in the perturbation theory then it is an eigenstate of the full Hamiltonian H.

lim
ε→0

Sε(0,−∞) |φ0〉
〈φ0|Sε(0,−∞)|ψ0〉

≡ |ψ0〉
〈φ0|ψ0〉

(B.1)

Here |φ0〉 is the ground state of H0.

Proof In the interaction picture we have

|ψI(t)〉 = Sε(t, t0) |ψI(t0)〉

The time development operator has the same expansion as given in (1.3).

Sε(t, t0) =
∞∑
n=0

(−i)n

n!

∫ t

t0

dt1....

∫ t

t0

dtne
−ε(|t1|+....+|tn|)T{ĤI(t1)ĤI(t2)....ĤI(tn)}

(B.2)
Now as t0 → −∞, H approaches H0. In this limit we can write

|ψI(t0)〉 = e
iH0t0

~ |ψS(t0)〉 = e
iE0t0

~ e−
iE0t0

~ |φ0〉 = |φ0〉

We thus obtain the relation

|ψI(t0)〉 = Sε(0,−∞) |φ0〉 (B.3)

To take the limit ε→ 0 we start with the expression

(Ĥ0 − E0) |ψ0(ε)〉 = (Ĥ0 − E0)Sε(0,−∞) |φ0〉
= (Ĥ0Sε(0,−∞)− Sε(0,−∞)Ĥ0) |φ0〉
= [H0, Sε(0,−∞)] |φ0〉

(B.4)
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To evaluate the commutator bracket we consider the expansion in (B.2) and
directly insert it into the commutator bracket. For the nth term of the series we
have

[Ĥ0, ĤI(ti)ĤI(tj)......ĤI(tk)] =

[Ĥ0, ĤI(ti)]ĤI(tj)......ĤI(tk) + ĤI(ti)[Ĥ0, ĤI(tj)......ĤI(tk)]

Expanding all the commutators gives us:

[Ĥ0, ĤI(ti)ĤI(tj)......ĤI(tk)] = [Ĥ0, ĤI(ti)]ĤI(tj)......ĤI(tk)

+ ĤI(ti)[Ĥ0, ĤI(tj)]......ĤI(tk)] + ....+ ĤI(ti)ĤI(tj)......[Ĥ0, ĤI(tk)] (B.5)

Here i,j,k represent a possible time ordering of n time indices. Now the equation
of motion in the interaction picture gives

−i~∂
ˆHI(t)

∂t
= [H0, HI(t)]

Thus the commutators in (B.5) each yield a derivative simplifying the expression
to:

[Ĥ0, ĤI(ti)ĤI(tj)......ĤI(tk)] = −i~

(
n∑
l=1

∂

∂tl

)
ĤI(ti)ĤI(tj)......ĤI(tk) (B.6)

Now from the definition of the time ordering operator and using the identity(
n∑
l=1

∂

∂tl

)
θ(tp − tq)θ(tq − tr).........θ(tu − tv) = 0

we have

−i~T{

(
n∑
l=1

∂

∂tl

)
ĤI(ti)ĤI(tj)......ĤI(tk)} = −i~

(
n∑
l=1

∂

∂tl

)
T{ĤI(ti)ĤI(tj)......ĤI(tk)}

This gives us the expression

(Ĥ0 − E0) |ψ0(ε)〉 =
∞∑
n=0

(−i)n+1~
n!

∫ 0

−∞
dt1....

∫ 0

−∞
dtne

−ε(|t1|+....+|tn|)

(
n∑
l=1

∂

∂tl

)
T{ĤI(t1)ĤI(t2)....ĤI(tn)} |φ0〉 (B.7)
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Now all the derivatives make the same contribution in the integral as the dummy
variables can simply be switched, thus we can write the sum of derivatives as n
times a single derivative.

(Ĥ0 − E0) |ψ0(ε)〉 =
∞∑
n=0

(−i)n+1~
n!

∫ 0

−∞
dt1....

∫ 0

−∞
dtne

−ε(|t1|+....+|tn|)

(
n
∂

∂t1

)
T{ĤI(t1)ĤI(t2)....ĤI(tn)} |φ0〉 (B.8)

We next carry out integration by parts over t1. This yields the result

(Ĥ0 − E0) |ψ0(ε)〉 =
∞∑
n=0

(−i)n+1~
(n− 1)!

∫ 0

−∞
dt2....

∫ 0

−∞
dtne

−ε(|t1|+....+|tn|)

T{ĤI(t1)ĤI(t2)....ĤI(tn)}|0−∞ +

∫ 0

−∞
dt1εe

−ε(|t1|+....+|tn|)

T{ĤI(t1)ĤI(t2)....ĤI(tn)} |φ0〉 (B.9)

The first term is merely the integrand evaluated at t1 = 0 and t1 = −∞. The
lower limit contributes 0 to the integrand while the upper limit has the term

ˆHI(0). 0 being the latest time is always on the left and thus can be taken outside
the time-ordering operator. The remaining terms are simply the (n− 1)(th of the
series and simply summing over leads to Sε(0,−∞) again. Thus giving us

(Ĥ0 − E0) |ψ0(ε)〉 = −HI |ψ0〉+ ε
∞∑
n=0

(−i)n+1

(n− 1)!

∫ 0

−∞
dt1....

∫ 0

−∞
dtne

−ε(|t1|+....+|tn|)

T{ĤI(t1)ĤI(t2)....ĤI(tn)} |φ0〉 (B.10)

Now since HI = λV we can factor the λ out to get the coefficient in front as

(−i)n−1λn

(n− 1)!
= iλ

∂

∂λ

(−i)nλn

(n)!
(B.11)

Thus giving us the series for Sε(0,−∞) again. This finally gives us

(Ĥ − E0) |ψ0(ε)〉 = iλ
∂

∂λ
|ψ0(ε)〉 (B.12)

This can be rewritten as(
Ĥ − E0 − iελ

∂

∂λ

)
|ψ0(ε)〉 = 0
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Now we have the identity:(
∂

∂λ

)
|ψ0(ε)〉
〈φ0|ψ0(ε)〉

=
∂
∂λ
|ψ0(ε)〉

〈φ0|ψ0(ε)〉
− |ψ0(ε)〉

∂

∂λ
ln 〈φ0|ψ0(ε)〉

=⇒
∂
∂λ
|ψ0(ε)〉

〈φ0|ψ0(ε)〉
=

(
∂

∂λ

)
|ψ0(ε)〉
〈φ0|ψ0(ε)〉

+
|ψ0(ε)〉
〈φ0|ψ0(ε)〉

∂

∂λ
ln 〈φ0|ψ0(ε)〉

Inserting this into the previous equation we get(
Ĥ − E0 − iελ

∂

∂λ

)
|ψ0(ε)〉
〈φ0|ψ0(ε)〉

=
iελ |ψ0(ε)〉
〈φ0|ψ0(ε)〉

∂

∂λ
ln 〈φ0|ψ0(ε)〉 (B.13)

Now if we multiply (B.12) by 〈φ0|
φ0|ψ0(ε)

, we get

〈ψ0|ĤI |ψ0(ε)〉
〈φ0|ψ0(ε)〉

= iελ
∂

∂λ
ln 〈φ0|ψ0(ε)〉 ≡ E − E0 (B.14)

If we combine equations 13 and 14, we thus finally get(
Ĥ − E

) |ψ0(ε)〉
〈φ0|ψ0(ε)〉

= iελ
∂

∂λ

|ψ0(ε)〉
〈φ0|ψ0(ε)〉

(B.15)

We now take the limit ε→ 0. The right hand side goes to 0 and we are left with:

Ĥ
|ψ0〉
〈φ0|ψ0〉

= E
|ψ0〉
〈φ0|ψ0〉

(B.16)

This proves that the state obtained adiabatically from the non-interacting ground
state is an eigenstate of the full hamiltonian but this does not prove that it is a
ground state (although it usually is.) �
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